红外与激光工程, 2016, 45 (5): 0502001, 网络出版: 2016-06-12 复制并引用该论文 本文已被引 12 次 被引通知 机载激光雷达双光楔扫描系统设计与实现Design and realization of an airborne LiDAR dual-wedge scanning systemGet PDFFull Text图表论文大纲MetricsMore 朱精果 1,*李锋 1黄启泰 2李孟麟 1蒋衍 1刘汝卿 1姜成昊 1孟柘 1
作者单位 1 中国科学院光电研究院, 北京 1000942 苏州大学 现代光学研究所, 江苏 苏州 215006
激光扫描系统 双光楔 PID控制算法 机载激光雷达 laser scanning system dual-wedge PID control algorithm airborne LiDAR 摘要介绍了作为大型机载激光雷达关键部件的双光楔扫描系统的模型建立、设计实现以及实验验证。为实现双光楔扫描系统的大尺寸、宽视场和高精度指向, 设计了16°楔角、320 mm直径的成对光楔, 以及对应的高精度PID双轴扫描控制模块, 分析了系统误差来源和误差控制方法。在45 m距离的地面测试中, 通过每个3.6°转动楔镜, 累计100次与真值测量比对进行检校和验证, 扫描指向误差小于50 μrad, 通过搭载集成后的机载激光雷达飞行实验, 实测扫描视场为32.03°, 进一步验证了双光楔扫描系统的有效性。 AbstractThe modeling, design, implementation and experimental verification of dual-wedge scanning system was introduced, which as the key components of the large airborne LiDAR. In order to achieve large size, wide field of view and high precision pointing of dual-wedge scanner system, the dual-wedge which was 16° wedge angle and 320 mm diameter and corresponding PID biaxial scanning control module were designed, and the sources of system error and error control method were analyzed. In the ground test of 45 m away, rotating wedge mirror every 3.6°, for 100 times, companed with the measurement true value, and through calibration and validation, the scanning point error was less than 50 μrad. The flight experiments are carried loading with the integrated airborne LiDAR, the measured scanning field of view is 32.03°, verifies the validity of dual-wedge scanning system in further.
参考文献[1] 郑永超, 赵铭军, 张文平, 等. 激光雷达技术及其发展动向[J]. 红外与激光工程, 2006, 35(S): 240-246.
Zheng Yongchao, Zhao Mingjun, Zhang Wenping, et al. Trend of laser radar technology development[J]. Infrared and Laser Engineering, 2006, 35(S): 240-246. (in Chinese)
[2] 李孟麟, 朱精果, 孟柘, 等. 轻小型机载激光扫描仪设计[J]. 红外与激光工程, 2015, 44(5): 1426-1431.
Li Menglin, Zhu Jingguo, Meng Zhe, et al. The design of lightweight and small sized airborne laser scanner[J]. Infrared and Laser Engineering, 2015, 44(5): 1426-1431. (in Chinese)
[3] Shan Jie, Charles K. Topographic Laser Ranging and Scanning: Principles and Processing[M]. London: Taylor & Francis Group, 2008.
[4] 张勇, 曹喜滨, 吴龙, 等. 小面阵块扫描激光成像系统实验研究[J]. 中国激光, 2013, 40(8): 814001-1-7.
Zhang Yong, Cao Xibin, Wu Long, et al. Experimental research on small scale risley prism scanning imaging laser radar system[J]. Chinese Journal of Lasers, 2013, 40(8): 0814001-1-7. (in Chinese)
[5] Degnan J, Machan R, Leventhal E, et al. Inflight performance of a second generation: photon-counting 3D imaging LADAR[C]//SPIE, 2008, 6950: 695007-1-9.
[6] Richard M M, William R D. Jigsaw: A foliage-penetrating 3D imaging laser radar system[J]. Lincon Laboratory Journal, 2005, 15(1): 23-36.
[7] Degnan J J. A conceptual design for a spaceborne 3D imaging lidar[J]. E & I Elektrotechnik Und Informationstechnik, 2002, 119(4): 99-106.
朱精果, 李锋, 黄启泰, 李孟麟, 蒋衍, 刘汝卿, 姜成昊, 孟柘. 机载激光雷达双光楔扫描系统设计与实现[J]. 红外与激光工程, 2016, 45(5): 0502001. Zhu Jingguo, Li Feng, Huang Qitai, Li Menglin, Jiang Yan, Liu Ruqing, Jiang Chenghao, Meng Zhe. Design and realization of an airborne LiDAR dual-wedge scanning system[J]. Infrared and Laser Engineering, 2016, 45(5): 0502001.